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Abstract. We discuss the AGK rules for the exchange of an arbitrary number of reggeized gluons in
perturbative QCD in the high-energy limit. The results include the cancellation of corrections to single jet
and double jet inclusive cross sections, both for hard and soft rescattering contributions.

1 Introduction

More than 30 years ago, Abramovsky, Gribov and
Kancheli in their pioneering paper [1] have pointed out
that, for high-energy hadron–hadron scattering, the mul-
tiple exchange of pomerons with intercept at or close
to unity leads to observable effects in multiparticle final
states. As an example, double pomeron exchange predicts
fluctuations of the rapidity densities of produced parti-
cles; furthermore, in double inclusive particle production
multi-pomeron exchange leads to long range rapidity cor-
relations. All these results suggest that, at very high en-
ergies, hadron–hadron scattering might exhibit some sort
of critical behavior. As to the theoretical basis of these
predictions, only fairly general properties of Regge the-
ory have been used, especially features of particle–reggeon
vertices which are quite independent of any special under-
lying quantum field theory. In particular, no reference has
been made to QCD.

In recent years, the investigation of the small-x region
of hard scattering processes has lead to interest in the
BFKL pomeron [2] which, at short distances, describes the
exchange of vacuum quantum numbers at high energies. In
connection with saturation and the color glass condensate,
both in DIS at HERA and in heavy ion collisions at RHIC
also the multiple exchange of BFKL pomerons is being ad-
dressed; a convenient framework for this is the non-linear
Balitsky–Kovchegov (BK) equation. At hadron colliders,
there is more and more evidence [3] that at high energies
multiple interactions of partons cannot be neglected. All
this naturally suggests one to perform the AGK analysis in
the framework of perturbative QCD where the pomeron is
described by the sum of BFKL ladder diagrams. In partic-
ular, it will be of interest to understand how the presence
of multiple scattering affects, for example, the multiplic-
ity of jets in the final state or the rapidity correlation
between two jets. A special motivation for investigating
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multiple scattering comes from the interest in saturation:
most direct signals of the existence of saturation are ex-
pected to be seen in specific features of final states. Use of
the AGK rules in pQCD has already been made in several
papers [4,5].

The theoretical basis for studying these rules in pertur-
bative QCD has been laid down in [6]. A clean theoretical
environment for studying high-energy scattering processes
in pQCD is provided by virtual photons where the mass
of the photon defines the momentum scale of the QCD
coupling. The coupling of two BFKL pomerons to a vir-
tual photon has been analyzed in [7]; a generalization to
three BFKL ladders has been investigated in [8]. It is the
structure of these couplings of BFKL pomerons to the ex-
ternal photon which provides the basis for performing the
AGK analysis in pQCD. The most interesting applications
of the pQCD AGK analysis include deep inelastic electron
proton scattering or multijet production in pp collisions: in
both cases one needs multi-gluon couplings to the proton.
In the absence of any first-principle calculation, these cou-
plings have to be modelled, similarly to the initial condi-
tions of the parton densities. The perturbative analysis of
the coupling of two (and more) BFKL pomerons to virtual
photons suggests that these couplings are not arbitrary:
they obey certain symmetry requirements, which can be
expected to be valid also beyond perturbation theory. We
therefore believe that our understanding of the pQCD cou-
plings will help to model, for example in proton–proton
scattering, the coupling of n gluons to the proton.

In this paper we therefore begin with a brief review of
the main results of [6], and we point out which features of
the couplings are crucial for obtaining the AGK results1.
We then propose a generalization to multiple BFKL ex-
change in hadron–hadron scattering. Starting from these
couplings, we then re-derive, for illustration, the counting

1 The issue of AGK rules in connection with multiparticle
interaction has already been addressed in a different way in [9]
without investigation of the cancellations involved.
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Fig. 1. Graphical representation of a multi-Regge poles con-
tribution to the elastic scattering amplitude. The zigzag lines
represent pomerons

rules presented in the original AGK paper for an arbitrary
number of exchanged gluons, and we apply these rules to
single and double inclusive jet production cross sections.
The comparison with the original AGK paper allows us to
include into our analysis also soft rescattering corrections.
As a specific example, we consider the double BFKL cor-
rection to the Mueller–Navelet jet cross section formula
[10].

This paper is organized as follows. In Sect. 2 we briefly
review the logic behind the AGK analysis, and we summa-
rize the results of [6]. This leads us to define a framework
for studying multiple BFKL exchanges in hadron–hadron
scattering. In Sect. 3 we discuss the counting rules for in-
clusive cross sections, and in Sects. 4 and 5 we turn to
single jet and double jet inclusive cross sections. A few
details are put into an appendix.

2 Reggeon unitarity, energy cuts à la AGK,
and particle-pomeron couplings
in γ∗γ∗ scattering

2.1 The non-perturbative AGK rules

In this section we briefly review the AGK strategy and its
application to pQCD. We will conclude that the central
task is the derivation and the study of the coupling of four
(or more) reggeized gluons to virtual photons.

The original AGK paper starts from a multi-Regge
pole contribution to the elastic scattering amplitude
(Fig. 1), written as a Sommerfeld–Watson representation:

TAB(s, t) =
∫

dω

2i
ξ(ω)s1+ωF(ω, t). (1)
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and τ = ±1 being the signature. The (real-valued) par-
tial wave F(ω, t) has singularities in the complex ω-plane,

and the multi-Regge exchange corresponds to a particular
branch cut. There is a general formula for the discontinu-
ity across this cut [11] (Fig. 2a):

disc(n)
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As an example, the contribution of two even-signature
Regge poles (pomerons) with intercept close to unity is
negative compared to the single pole contribution. Equa-
tion (3) is a “reggeon unitarity equation”: it describes
the contribution of the n-reggeon t-channel state to the
discontinuity in angular momentum of the partial wave
F (Fig. 2). In the same way as in a usual unitarity inte-
gral particles in the intermediate state are to be taken on
mass shell, in the reggeon unitarity integral the reggeons
of the intermediate state are on shell in reggeon energy:
as indicated in Fig. 2c, the Regge pole is a bound state
of (at least) two particles, and the complex angular mo-
mentum of the two particles is put equal to the trajectory
function of the Regge pole. The formula (3) contains the
coupling of n Regge poles to the external particles, de-
noted by Nn(kj , ω). In general, they are functions of ω
and contain, for example poles and cuts due to the ex-
change of Regge poles. This includes, in particular, the
possibility that the reggeons i and j form a composite
state. Depending on the structure of the Nn, it may be
necessary to replace, in (3), the ω-dependent δ-function
by

∏n
1

(∫
dωjδ(ωj − βj)

)
δ
(
ω −

∑
j ωj

)
: in this case, the

vertex function Nn may depend not only upon the total
angular momentum ω, but also upon the ωj . An example
will be given further below. For these reasons, the vertex
functions Nn are more general than the impact factors.

For later considerations it will be useful to say a few
more words about the origin of this formula. Following the
idea of Gribov, Pomeranchuk and Ter-Martirosian [12] one
starts, in the simplest case, from the four particle inter-
mediate state in the t-channel unitarity equation in the
physical region of the process A + Ā → B + B̄ (Fig. 2b).
Above the 4-particle state, the 2 → 4 amplitude for the
process A + Ā → 1 + 2 + 3 + 4 appears. This scattering
amplitude (and the corresponding one below the 4-particle
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Fig. 2. Representation of the t-channel content of the elastic amplitude: a discontinuity across the 2-poles cut in the ω-plane,
b computation of the coupling 2 → 4 in the t-channel physical region and c isolation of the Regge poles in the (12) and (34)
channels. The crosses in a, b indicate that the lines are on shell in angular momentum and 4-momentum, respectively

state) is expanded in terms of partial waves, inserted into
the t-channel unitarity equation. Defining analytic con-
tinuations in angular momentum and helicity variables,
using Sommerfeld–Watson transformations, and perform-
ing by parts the t-channel unitarity phase space integrals,
one moves from the physical t-channel region to negative
t values. Retaining Regge poles in the (12) and (34) chan-
nels (illustrated in Fig. 2c), one finally arrives at the dis-
continuity of the t-channel partial wave across the two-
reggeon cut, given by (3). This form of t-channel unitarity
is called “reggeon unitarity”: in the Regge description of
high-energy scattering processes the partial waves satisfy
reggeon unitarity relations, and the single pole, double,
triple, ... exchanges can be isolated by computing dis-
continuities across the corresponding cuts in the angular
momentum plane. The analytic form of the discontinuity
equation given in (3) is universal, whereas the reggeon–
particle couplings entering the equation, Nn, have to be
computed from the underlying theory.

The central goal of the AGK analysis is the decom-
position of the n-reggeon exchange contribution in terms
of s-channel intermediate states. To be precise, one is in-
terested in the total cross section, i.e. in the absorptive
part or, equivalently, in the discontinuity w.r.t. energy of
the scattering amplitude (1). It is quite obvious that the
absorptive part of the amplitude (1) will consist of several
different contributions: each piece belongs to an energy cut
line across Fig. 1, and there are several different ways of
drawing such energy-cutting lines. Each of them belongs
to a particular set of s-channel intermediate states. For ex-
ample, a cutting line between reggeons (Fig. 3a) belongs
to double diffractive production on both sides of the cut:
there is a rapidity gap between what is inside the upper
blob and the lower blob. When relating this contribution
with the full diagram in Fig. 1 one requires a “cut ver-
sion” of the reggeon–particle couplings Nn. Similarly, the
cut through a reggeon (Fig. 3b) corresponds to a so-called
multiperipheral intermediate state, and another cut ver-
sion of Nn appears. The basis of the AGK analysis is the

observation that, under very general assumptions for the
underlying dynamical theory, the couplings Nn are fully
symmetric under the exchange of reggeons, and all their
cut versions are identical. This property then allows one
to find simple relations between the different cut contri-
butions, and to derive a set of counting rules.

2.2 The pQCD case

From this brief review it follows that the central task of
performing the AGK analysis in pQCD requires the com-
putation and study of the coupling functions Nn. The
simplest task is the study of the two-pomeron exchange.
Since the BFKL pomeron is a composite state of two
reggeized gluons, we have to start from the exchange of
four reggeized gluons (Fig. 4). The blobs above and below
denote the couplings N , and they will be discussed below.
They have a nontrivial content of reggeized gluons, and,
in particular, any pair of gluons 1, 2, ..., 4 can come from a
composite BFKL state contained in N . This diagram has
to be compared with Fig. 1: the elementary Regge poles
in pQCD are the reggeized gluons, and the pomeron ap-
pears as a composite state. Rather than going in all detail
through the chain of arguments described before (which
would lead us to the study of a t-channel 2 → 8 process!),
we mention a “shortcut” path which takes us, in an easier
way, to the desired coupling of four reggeized gluons to
external particles. It is based upon the observation that
the same coupling which appears in the reggeon unitarity
equation (3) for the discontinuity across the four reggeon
cut is also contained in the diffractive cross section formula
for low- and high-mass diffraction (triple Regge limit): the
process (Fig. 5) γ∗ + C → X + C where X sums over low-
and high-mass diffractive states (with squared mass M2

X)
of the incoming projectile γ∗. In the limit of large MX

and large energy s with the restriction M2
X � s, this

process is dominated by pomeron exchanges in the lower
t-channels which in pQCD are BFKL ladders. By cutting
these t-channels (more precisely: by taking cuts across the
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Fig. 3. Some examples of the different s-channel cuts
of the 2-pomeron contribution: a diffractive and b
multiperipheral intermediate states
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Fig. 4. Exchange of four reggeized gluons in pQCD. The wavy
lines represent reggeized gluons. The blobs above and below
denote the functions N4({kj}, ω), computed in pQCD

angular momentum variables in the lower t-channels), we
arrive at the coupling of four reggeized gluons to the ex-
ternal particle γ∗. This is the method which was used in
[7] for deriving the coupling of four reggeized gluons to
the virtual photon, named D4. It is defined to contain the
energy denominator 1/

(
ω −

∑4
j=1

)
for the four reggeized

gluons; its amputated counterpart, C4 = D4

(
ω −

∑4
j=1

)
will lead to a pQCD model for the coupling function N4.
The study of D4, therefore, provides the starting point
for the AGK analysis in pQCD. In the following we will
discuss the function D4, keeping in mind that at the end
we have to multiply by

(
ω −

∑4
j=1

)
. Before inserting this

coupling into the discontinuity formula, we have to ad-
dress the complications arising from the color degree of
freedom and from the reggeization of the gluon.

Let us recapitulate the main properties of D4. From
the t-channel point of view it is natural to demand that
the reggeon–particle coupling that enters the reggeon uni-
tarity equation satisfies certain symmetry requirements.
In the simplest case, it should be symmetric under the
exchange of the reggeons, i.e. their momenta and color la-
bels. On the other hand, we know from the BFKL equation
that there are two different t-channel states. The pomeron
state which belongs to the color singlet is completely sym-
metric; on the other hand, when the BFKL amplitude
is projected onto the antisymmetric color octet, it satis-
fies the bootstrap equation, and the two gluons “collapse”

into one single gluon. It is therefore not unexpected that
also the four reggeon amplitude D4 contains antisymmet-
ric configurations which satisfy bootstrap equations. One
of the main results of the analysis of [7] is the complete
decomposition of D4 into two pieces:

D4 = DI
4 + DR

4 (5)

Here the first term, DI
4, is completely symmetric under the

exchange of any two gluons, whereas the second one, DR
4 ,

is a sum of antisymmetric terms which, as a result of boot-
strap properties, can be expressed in terms of two-gluon
amplitudes, D2. In a graphical way, DR

4 is illustrated in
Fig. 6: after making use of the bootstrap properties, DR

4 is
reduced to a sum of D2 functions. Under the exchange of
the two reggeized gluons, D2 is symmetric. It is only af-
ter this decomposition has been performed, and we have
arrived at reggeon–particle couplings with “good” prop-
erties, that we can start with the AGK analysis.

The construction of DI
4 implies that the same function

appears when, in the AGK analysis, one computes dif-
ferent energy discontinuities of γ∗–γ∗ scattering, no mat-
ter where the cutting line runs, between gluon “1” and
“2”, or between “2” and “3”, or between “3” and “4”.
Since in pQCD the pomeron is a bound state of two glu-
ons, the two-pomeron state is formed, e.g., by the pairs
(12) and (34). Thus cuts through the pomeron or between
two pomerons all lead to the same two-pomeron particle
vertex. This means that DI

4 satisfies all the requirements
listed in the AGK paper.

Starting from these functions DI
4 and DR

4 , the inves-
tigation in [6] has shown in some detail how the AGK
counting rules work in pQCD: the analysis has to be done
separately for DI

4 and DR
4 . For the first piece, we obtain

the counting arguments for the pomerons (which is even-
signatured) given by AGK; here the essential ingredient
is the complete symmetry of DI

4 under the permutation
of reggeized gluons. In the latter piece, the odd-signature
reggeizing gluons lead to counting rules which are slightly
different from those of the even-signature pomeron: once
the bootstrap properties have been invoked and DR

4 is ex-
pressed in terms of D2 functions, cutting lines through the
reggeized gluon appear. Since it carries negative signature,
the relative weight between cut and uncut reggeon is dif-
ferent from the pomeron. It should be stressed, however,



J. Bartels et al.: AGK cutting rules and multiple scattering in hadronic collisions 57

γ∗ γ∗

=

C C C C

γ∗
X

2

C C

Fig. 5. Six point amplitude for the computation of the high-mass diffraction cross section in the triple Regge limit

= + + +

++ + +

1 432

γ∗γ∗ DR
4 D2 D2 D2

D2D2D2D2

Fig. 6. Decomposition of the reggeizing part of the four reggeon amplitude DR
4 in term of reggeized gluons

Nn

kn, ank1, a1

NnP P

Fig. 7. Graphical illustration of the coupling
Nn(k1, a1; . . . ;kn, an; ω) of a proton to n reggeized glu-
ons

that the generalization of the AGK analysis to odd signa-
ture reggeons is contained in the AGK paper; in pre-QCD
times, however, there was no obvious reason for consider-
ing Regge poles other than the pomeron.

Let us now turn to the main goal of this paper, to the
use of the pQCD cutting rules in a non-perturbative en-
vironment (e.g.multi-ladder exchanges in pp scattering).
Basic ingredients are the non-perturbative couplings of n
reggeized gluons to the proton. In order to justify the use
of pQCD we need a hard scattering subprocess: we will
assume that all reggeized gluons are connected to some
hard scattering subprocess; consequently, each gluon line
will have its transverse momentum in the kinematic re-
gion where the use of pQCD can be justified. Since AGK

applies to the high-energy limit (i.e. the small-x region),
all t-channel gluons are reggeized. Based upon the analy-
sis in pQCD, we formulate a few general conditions which
the non-perturbative couplings have to satisfy. Following
the original AGK paper, we will denote these couplings by
Nn(k1, a1; . . . ;kn, an; ω), where ki and ai refer to trans-
verse momenta and color of the ith gluon, and require that
(i) they are symmetric under the simultaneous exchange
of momenta and color, e.g. (ki, ai) ↔ (kj , aj);
(ii) cut and uncut vertices are identical, independently
where the cut line enters.

In the following sections we will work out a few results
which follow from these conditions.

We conclude this section with a remark on the reggeiz-
ing pieces, DR

4 . The analysis of D2, D3, and D4 in [7], and
of D5 and D6 in [8] lead to the following conjecture about
the general coupling of n reggeized gluons to virtual pho-
tons. Functions with an even number of lines, D2n, contain
(1) a piece which is completely symmetric, DI

2n;
(2) a second piece which can be expressed in terms of
D2n−2, by either having two of the outgoing reggeized glu-
ons each split into two gluons or one of the outgoing gluons
split into three gluons;
(3) a third piece which is reduced to D2n−4 with further
splittings at the lower end etc.

Finally, functions with an odd number, D2n+1,
(4) can always be reduced to D2n, with one splitting at
the lower end.
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As a consequence, also these reggeizing pieces can be
reduced to the couplings N2n. Since the reggeization of the
gluon is a general feature of QCD, valid to all orders in per-
turbation theory, the appearance of these reggeizing pieces
can be expected to happen also in a non-perturbative cou-
pling; in other words, in addition to the functions N2n

mentioned before, we expect also contributions with the
same functions N2n, but one (or more) of the reggeized
gluons split into two gluons etc.

In the following we will apply the AGK analysis to
pp scattering, assuming that the couplings of n gluons to
the proton satisfy the requirements listed above. In this
paper we will not analyze yet the reggeizing pieces; their
analysis will be taken up in a future paper. Another appli-
cation of the AGK analysis is DIS, in particular the pro-
duction of diffractive final states. Such an analysis cannot
avoid to include the reggeizing pieces: to lowest order in
αs the coupling of n gluons to the virtual photon consists
of reggeizing pieces only and hence cannot be ignored.

3 Inclusive cross section

In this section we discuss the AGK rules for inclusive cross
sections. Since we are not asking for a final state which
provides a hard scale, such a discussion might seem some-
what academic: rescattering in pp collisions is described
by multiple exchanges of non-perturbative pomerons, not
simply of bound states of reggeized gluons. For consis-
tency, however, it is important to show that BFKL ex-
changes lead to the same counting rules as the non-
perturbative pomerons. Also, for the modeling of events
with multiple scattering events, it will be useful to illus-
trate the pattern of AGK cancellations.

3.1 The non-perturbative case

Let us begin by recapitulating the counting rules of the
original AGK paper. The contribution of the n pomeron
cut to the scattering amplitude is given by

T n−cut
AB (s, t) =

∫
dω

2i
ξ(ω)s1+ω disc(n)

ω [F(ω, t)], (6)

and the discontinuity of the partial wave has the form
given in (3). Doing the ω integral we arrive at

T n−cut
AB (s, t) = π

∫
dΩn

n!
γ{βj} ξ(β)s1+β NA

n NB
n , (7)

where we have defined β ≡ β({kj}) =
∑n

j=1 βj and
NA,B

n ≡ NA,B
n ({kj}; β). The energy discontinuity (imag-

inary part) is obtained by simply replacing the signature
factor (2) by 1. As we have explained before, the aim of
AGK is to obtain the same result for the discontinuity
from the unitarity equation, i.e. from products of produc-
tion amplitudes. Each such contribution can graphically
be illustrated by a cutting line (Fig. 3). One of the main
results of AGK states that the s-discontinuity of the n-
cut contribution to the amplitude, discs[T n−cut

AB (s, t)], can
be written as a sum over the number k of cut pomerons
(k = 1, ..., n),

An(s, t) def= discs[T n−cut
AB (s, t)] =

n∑
k=0

An
k (s, t), (8)

and the terms in the sum are

An
k (s, t) = 2πi

∫
dΩn

n!
Fn

k s1+β NA
n NB

n , (9)

where we have introduced the AGK factors

Fn
k =

{
(−1)n 2n−1 + γ{βj} if k = 0,

(−1)n−k 2n−1
(
n
k

)
if k > 0.

(10)

If a (non-perturbative) pomeron is viewed as a multi-
peripheral chain of secondary particles, the cut of each
pomeron gives a uniform distribution in rapidity, and the
sum in (8) leads to density fluctuations.

The simplest case, the two-pomeron exchange, has the
three contributions illustrated in Fig. 8: Figure 8a shows
the diffractive cut: all the pomerons are left uncut, and
there is a rapidity gap between the fragmentation regions
of the two particles. Figure 8b represents a single multi-
plicity cut in which only one pomeron has been cut. Even-
tually, the situation shown in Fig. 8c corresponds to two
cut pomerons, and the multiplicity of particles is doubled
with respect to the previous case. Neglecting the real part

a b c

Fig. 8. There are three different ways to cut the two-pomerons diagram: a diffractive cut, b single multiplicity cut and c double
multiplicity cut
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of the pomeron signature factor (2) it reduces to the imag-
inary unit i, and the γ factor (4) is just (−1)n−1. From
(10) we obtain for the weight factors the well-known re-
sults:

1 : diffractive (k = 0)
−4 : single multiplicity (k = 1) (11)

2 : double multiplicity (k = 2).

In other words, the different contributions are in the pro-
portion

A2
0 : A2

1 : A2
2 = 1 : −4 : 2. (12)

This result can be summarized as follows: final states with
a rapidity gap (k = 0) are accompanied by other final
states with double density (k = 2), and their respective
cross sections come with the relative weight given by (12).
At the same time, these final states are connected with
corrections to the cross section of final states with normal
density (k = 1), as contained in (12).

For later use we note an important generalization: sup-
pose we substitute one of the soft pomerons by a different
Regge pole, and we concentrate on those contributions
where this Regge pole is cut (later on, in the context of
inclusive jet production, we shall apply this argument to
a hard cut gluon ladder). Following the previous argu-
ment used to derive the usual AGK rules, we simply sum
over cut and uncut soft pomerons, where the uncut soft
pomerons appear on both the left and the right side of
the cut reggeon. As a result, the γ factor in the first line
of (10) does not appear, and for the contribution of k cut
pomerons we simply obtain

Fn
k ∝ (−1)n−1−k

(
n − 1

k

)
, k = 0, ..., n − 1 (13)

Clearly the sum over k vanishes identically: soft multi-
pomeron corrections to a single cut Regge pole cancel.
This argument is easily generalized to two or more singled
out cut Regge poles.

So far we have discussed the AGK counting only at
one rapidity value. The AGK paper also addresses the
question of how to continue the s-discontinuity cutting
lines inside the upper or lower vertex function Nn. When
following, for example, the cut pomerons inside Nn (or
cutting lines running between pomerons) one faces the
question of how these cutting lines pass through pomeron
interaction vertices (“cut vertices”). AGK constraints can
be formulated only for a very restricted class of interaction
vertices (in particular, for the 1 → n pomeron vertex). For
the general case (for example, for the 2 → 2 vertex) this
is not the case; only explicit models, e.g. calculations in
pQCD, can provide further information.

3.2 The pQCD case

Let us now derive the counting rule (10) in pQCD. Since
a pomeron appears as a bound state of two reggeized glu-
ons, the discussion of n pomerons has to start from 2n

2 31 4 2 31 4 2 31 4

Fig. 9. The three s-channel cuts contributing to the four
reggeized gluon exchange

reggeized gluons. Moreover, in LLA the signature factor
of the reggeized gluon is real, ξG(k) = −2/πk2; there-
fore, working in LLA, the diagrams with any cut reggeized
gluon are suppressed and will not be considered. The
derivation of (10) follows from straightforward combina-
torics. The simplest case, n = 2, has been discussed in [6],
and we can use these results (Fig. 9) for illustrating the
general proof.

The situation is depicted in Fig. 9: each term denotes
the product of production amplitudes, and it is under-
stood that we sum and integrate over the produced glu-
ons. We again take the discontinuity in ω across the four
t-channel gluons (denoted by crosses), and all the pro-
duced gluons are absorbed inside the blobs above and be-
low. In the first diagram, the production amplitude on the
left of the cutting line (vertical dashed line) contains the
exchange of one gluon, the amplitude on the RHS three
gluons. Three gluon exchange comes with a negative sign
(from the γ factor in (3) and from the signature factor in
(1)); moreover, there is a symmetry factor 1/3!. Similarly,
the second term in Fig. 9 denotes the square of two produc-
tion amplitudes: two-gluon exchange is purely imaginary
and has the symmetry factor 1/2!. Note that, in contrast
to the 2 pomeron exchange discussed above, in the case of
reggeized gluons we do not need to consider cutting lines
inside the reggeized gluons: compared to an uncut gluon,
a cut gluon line is suppressed in order αs.

Since we are looking for the contributions of BFKL
pomerons which are bound states of two gluons, we must
consider all possible pairings among the reggeized glu-
ons; using the notation (i1j1)(i2j2) to indicate that gluon
i1 forms a bound state with the gluon j1, and gluon i2
with j2, the three possibilities are (12)(34), (13)(24) and
(14)(23).
Let us first consider the “diagonal” configuration, in which
the pairings in the upper and in the lower blob are iden-
tical. One easily sees that these different configurations
contribute with different multiplicities. Starting with the
first graph in Fig. 9, in all three possible pairings one of
the gluon pairs is cut, and the other one is not. This
means that all the three configurations contribute with
single multiplicity (k = 1); the weight factor is −3× 1/3!.
The same argument holds for the third graph in Fig. 9.
In the second graph, the configuration (12)(34) does not
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have any cut pair; this contributes to the diffractive term
(k = 0), and the weight is (1/2!)×(1/2!) = 1/4. The other
two pairings have both gluon pairs cut, and therefore they
contribute to the double multiplicity term (k = 2); the
weight factor is 2×(1/2!)×(1/2!) = 1/2. This agrees with
the AGK result (12).

It should be clear how to generalize this counting to
the exchange of 2n reggeized gluons. The general result
for the contribution of k cut pomerons assumes the form
(for the explicit computation see Appendix A):

Ãn
k (s, t) = 2πi F̃n

k

∫
dΩ2n

n!
s1+β̃n N2n N2n γ̃{kj}, (14)

where

F̃n
k =

{
(−1)n 2n−1 + (−1)n−1 if k = 0,

(−1)n−k 2n−1
(
n
k

)
if k > 0,

(15)

and

γ̃{kj}
def=

21−n

π

2n∏
j=1

ξG(kj) =
21−n

π

2n∏
j=1

2
πk2

j

. (16)

Here we use the tilde symbol to indicate that the result
is obtained in pQCD. Note that the weight factors F̃n

k
coincide with those defined in (10) for k �= 0, while for
k = 0 they coincide when the real part of the soft pomeron
signature factor is neglected (γ{βj} = (−1)n−1).

It should be stressed that this discussion has made
use only of the very general symmetry properties of the
4-gluon vertex functions above and below the four gluon
state. Each vertex function can very well have a compli-
cated internal structure of reggeized gluons; for example,
it may consist of a single BFKL ladder which splits into
four gluons. In this case, our analysis has demonstrated
the AGK rules inside a closed pomeron loop. The crucial
ingredient is the symmetry structure, and in this example
it is garanteed by the form of the 2 → 4 gluon vertex. In
an analogous way one can generalize the validity of the
AGK analysis to general reggeon diagrams in pQCD.

What remains is the discussion [6] of the case where, in
Fig. 9, the pairings above and below the four gluon state
do not match (non-diagonal configurations): an example
is given in Fig. 10a. The corresponding final states are de-
picted in Fig. 10b. Here the situation is the following: in
the upper rapidity interval we have multiplicity k which
can take one of the values 0, 1, or 2 (k = 0 in our ex-
ample). Each multiplicity k comes with a relative weight,
described by the three-component vector (1,−4, 2). In the
lower rapidity interval we have multiplicity k′ (in our ex-
ample k′ = 2). Contributions to this k′ can come from
different k in the upper interval, so the transition from
the upper to the lower interval – named a “switch” – can
be described by a 3×3 matrix, whose elements are defined
by the fraction of configurations that lead from k to k′:

M =


 0 0 1

2
0 1 0
1 0 1

2


 (17)

a b

Fig. 10. An example of non-diagonal configuration: a double
wavy line represent a two reggeized gluons bound state (they
can be freely moved due to the symmetry of the impact fac-
tors). The bound state configuration is not the same above and
below the cut. In a the cut forward amplitude is shown, while
in b we depict an example of a final state coming from the cut

(here k labels the columns, k′ the rows). Now one easily
verifies that the vector F t = (1,−4, 2) is an eigenvector
of this matrix M: this implies that the ratios diffraction
: single density : double density holds for both the upper
and the lower rapidity interval, i.e. it is invariant.

This pattern holds for an arbitrary number, 2n, of ex-
changed gluons. The number k of cut BFKL pomerons
denotes the density of gluons in the final state, and for di-
agonal configurations the AGK factors given in (15) mea-
sure the relative weight of states with density k. If we move
to the neighboring rapidity interval, the density changes
to k′: the transitions from k to k′ define a matrix M, and
the eigenvectors of this matrix are formed by the AGK
factors in (15). They define, for each rapidity interval, the
relative weight of density k. Some details are given in the
appendix.

3.3 An example

More detailed results can be derived if one assumes a spe-
cific model for the couplings N2n(k1, a1; . . . ; k2n, a2n; ω) to
hadrons A and B. A popular choice is the eikonal model.
In order to satisfy our symmetry requirements, we have
to start from the ansatz

NA
2n(k1, a1; . . . ;k2n, a2n; ω)

=
1√

(N2
c − 1)n

×
(
φA(k1,k2; ω12)δa1a2 (18)

·... · φA(k2n−1,k2n; ω2n−1,2n)δa2n−1a2n +
∑

Permutations

)
.

Here ω12 = ω1 + ω2, and each factor φA(k1, k2; ω12)δa1a2

represents a BFKL amplitude in the color singlet state,
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convoluted with an impact factor φA
0 (k1,k2). The sum has

to extend over all possible pairings of the gluons 1, ..., 2n:
(i1, j1), ..., (in, jn) (alltogether, there are Cn = (2n − 1)!!
such possibilities). When inserting this ansatz for NA

2n and
NB

2n into (A.1), (A.2) and performing the counting de-
scribed in the first subsection of the appendix we proceed
in the following way.
(a) We rewrite (A.1) in the same way as (3), i.e. we define
the Sommerfeld–Watson transformation F̃n(ω,q) of the
scattering amplitude T̃ n(s,q) and take the discontinuity
across the 2n-reggeon cut:

discωF̃n(ω,q) (19)

= 4i
2n−1∑
j=1

Sn
j

∫
dΩ2n NA

2n δ(ω − Σjβj) NB
2n

∏
j

ξG(kj).

(b) When combining the N2n from above and from be-
low, we retain only the diagonal combinations, i.e. those
combinations where the pairings above and below match.
In this way we sum over all bound states. Formally, this
coincides with the large-Nc limit. Each term obtained in
this way is a product of n BFKL exchanges.
(c) In each of these products of n BFKL exchanges we
have to apply the discussion given after (4): for each pair
of gluons (ij) we define the variable ωij and we substitute

δ
(
ω −

∑
βj

)

→


∏

(ij)

∫
dωijδ(ωij − βi − βj)


 δ

(
ω −

∑
ωij

)
.

In order to take care of momentum conservation we write
the measure as

dΩ2n =
∫

d2beib·q
2n∏

j=1

d2kj

(2π)2
e−ib·kj . (20)

The discontinuity then assumes the form

discωF̃n(ω, t)

= 4i
2n−1∑
j=1

Sn
j Cn

∫
d2beib·q

×
∏
(ij)

[∫
d2ki

(2π)2

∫
d2kj

(2π)2
e−ib·(ki+kj)

×
∫

dωijξG(ki)ξG(kj)φA(ki,kj , ωij)

×δ(ωij − βi − βj)φB(ki,kj , ωij)
]

×δ(ω − Σ(ij)ωij) . (21)

(d) Defining the variable

qij = ki + kj , (22)

using the result (A.8) of the appendix and observing that,
since ξG(k) is real,

ξG(ki)ξG(kj) = �[−i(iξG(ki))(iξG(kj))]
= γ2(ki,kj),

we can write the multiplicity k (for k > 0) contribution to
(21) in the following form:

discωF̃n
k (ω, t)

= 4i
(−1)n−k

k!(n − k)!

∫
d2beib·q∏

(ij)

[∫
d2qij

(2π)2
e−ib·qij

∫
dωij

×
∫

d2ki

(2π)2
γ2(ki,kj)φA(ki,qij − ki, ωij)

× δ(ωij − βi − βj)φB(ki,qij − ki, ωij)
]

× δ(ω − Σ(ij)ωij) . (23)

(e) Comparing the integrand of the ωij integral with for-
mula (3), we identify it as the discontinuity in ωij of the
partial wave of the BFKL pomeron across the two-reggeon
cut: ∫

d2ki

(2π)2
γ2(ki,kj)φA(ki,qij − ki, ωij)

×δ(ωij − βi − βj)φB(ki,qij − ki; ωij)

=
1
πi

discωij [FBFKL(ωij ,qij)], (24)

where

FBFKL(ωij ,qij)

=
∫

d2kd2k′

(2π)4
φA

0 (k,qij − k) (25)

×G2(k,qij − k,k′,qij − k′; ωij)φB
0 (k′,qij − k′).

Therefore (23) becomes

discωF̃n
k (ω, t) = 4i

(−1)n−k

k!(n − k)!

∫
d2beib·q

×
∏
(ij)

[
1
πi

∫
d2qij

(2π)2
e−ib·qij

×
∫

dωijdiscωij [FBFKL(ωij ,qij)]
]

×δ(ω − Σ(ij)ωij). (26)

(f) Returning to the energy representation:

Ãn
k (s, t) = 4is

(−1)n−k

k!(n − k)!

∫
d2beib·q (27)

×
[

1
πi

∫
d2q′

(2π)2
e−ib·q′

∫
dω′discω′ [FBFKL(ω′,q′)]sω′

]n

,

and defining

Ω(s,b) (28)

=
1
πi

∫
d2q

(2π)2
e−ib·q

∫
dω discω[F̃n

BFKL(ω,q)]sω,
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+

ba

+ = 0

Fig. 11. The pattern of cancellation is shown
for the single jet inclusive case: the first graph
survives, the three other cancel each other

a b

∑
cuts

c

= 0
∑

cuts

d

= 0
Fig. 12. The pattern of can-
cellation is shown for the
double jet inclusive case: the
graph a and c contribute, the
other interfere destructively
giving a vanishing contribu-
tion

a b

Fig. 13. Some examples of the terms
that survive to the AGK cancellation for
the single jet production a and for the
double jet production b

we obtain, after summation over n ≥ k,

Ãk(s, t) = 4is
∫

d2beib·qP (s,b), (29)

where

P (s,b) =
[Ω(s,b)]k

k!
e−Ω(s,b) (30)

is the probability of having k cut pomerons at fixed
impact parameter b.

4 Single and double inclusive cross sections

In this section we turn to the realistic case, where one
ore more hard final states (e.g. jets or heavy flavors) are
produced. Again we begin with a brief repeat of the AGK
results and then turn to pQCD.

In the AGK paper it has been shown that, for the single
(or double) particle inclusive cross section, large classes of
multi-pomeron corrections cancel. We illustrate this result
in Fig. 11: for the single inclusive case (Fig. 11a) all multi-
pomeron exchanges across the produced particle cancel
(Fig. 11b), and the same is true for the double inclusive
case (Fig. 12a,b). For the latter case, however, there is a

new contribution: the produced particles originate from
different pomerons (Fig. 12c). This term is of particular
interest, since it introduces longe range correlations in the
rapidity difference y1 − y2:

ρ(y1, y2) ∼
1

σtot

d2σ

dy1dy2
− 1

σ2
tot

dσ

dy1

dσ

dy2
, (31)

where, for simplicity, we have suppressed all variables
other than the rapidities. The multi-pomeron corrections
to this term, again, cancel (Fig. 12d). In all cases, how-
ever, there remain multipomeron corrections between the
production vertices and the projectiles. Examples are il-
lustrated in Fig. 13.

4.1 Inclusive single jet production in pQCD

We now turn to the corresponding final states in pQCD.
As usual, the presence of the hard scale in the final state
justifies, as far as the cut ladder with the produced jet or
heavy flavor state is concerned, the use of perturbation
theory.

The basic process is illustrated in Fig. 14: in the con-
text of LL BFKL ladders (or kt factorization), the cross
section has the form
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=

Φ2

Φ2

Φ2

Φ2

x1, k1

x2, k2

Krealp Kreal

p

Fig. 14. Pictorial representation of the basic process for the
single inclusive jet production

dσ

dyd2p
(y,p)

=
1
4

∫
d2k1

(2π)2

∫
d2k2

(2π)2
(2π)2δ(2)(p − k1 − k2)

×Φ2(x1;k1,−k1)
k2

1k
2
1

Kreal(k1,−k1;−k2,k2)

×Φ2(x2;k2,−k2)
k2

2k
2
2

, (32)

with x1 and x2 being the momentum fractions of the in-
coming gluons with momenta k1 and k2, the rapidity of
the emitted jet given by y = 1/2 log(x1/x2), and Kreal
is the real emission BFKL kernel (Lipatov vertex) in the
forward direction,

Kreal(k1,−k1;−k2,k2) =
4αsNc

(2π)2
k2

1k
2
2

(k1 + k2)2
. (33)

The connection between the unintegrated gluon densities
Φ2(x,k,−k) and the usual gluon density g(x, Q2) is given
by

xg(x, Q2) =
∫ Q2

Q2
0

d2k
k2

[
2

(2π)4
Φ2(x,k,−k)

]
. (34)

In kt factorization, the kernel (33) builds up the jet
production subprocess in the approximation where two
reggeized gluons with momenta k1,2 merge into a single
gluon with momentum k1 + k2 which subsequently origi-
nates the observed jet:

dσ̂gg(x1,k1, x2,k2, y,p)
dyd2p

=
1

2sx1x2
Kreal(k1,−k1;−k2,k2)

×(2π)4δ(4)(p − k1 − k2) (35)

=
(2π)4

s2x1x2
Kreal(k1,−k1;−k2,k2)δ(2)(p − k1 − k2)

×δ

(
x1 −

E⊥(p2)√
s

ey

)
δ

(
x2 −

E⊥(p2)√
s

e−y

)
,

where E⊥(p2) =
√

m2 + p2 is the transverse energy of
the jet and m its invariant mass (in our case of a single
gluon we have m = 0). Using (35), (32) can be cast in the
form

dσ

dyd2p
(y,p)

=
s2

4(2π)2

∫
d2k1

(2π)2

∫
d2k2

(2π)2

∫
dx1

∫
dx2

× x1Φ2(x1;k1,−k1)
k2

1k
2
1

dσ̂gg

dyd2p
(x1,k1, x2,k2, y,p)

×x2Φ2(x2;k2,−k2)
k2

2k
2
2

, (36)

which, by means of (34), strongly resembles the analogous
formula emerging in collinear factorization.

Next we consider the exchange of four reggeized glu-
ons (Fig. 15); the corresponding production processes are
illustrated in Fig. 16. The coupling of the gluons to the
proton goes via the functions N4; compared with (36) we
restrict ourselves to the limit of small x1, x2. We do not
write down formulae, but restrict ourselves to a qualita-
tive discussion. Applying the counting arguments of the
previous section to Fig. 15 we will show that all contri-
butions sum up to zero. The symmetry factors 1/2! etc.
are the same as before; the counting of pairings is slightly
different. In the previous case we have asked for multiplic-
ities which has lead us to count bound states above and
below the t-channel intermediate state. Now we compute
a one jet inclusive cross section and count the number of
possibilities to attach the produced parton (jet). Accord-
ing to our assumptions, the couplings above and below
are assumed to be symmetric under the exchange of gluon
lines. In the first diagram of Fig. 15, the number of ways of
attaching the produced parton to the reggeons in the left
is 1, on the right 3. Therefore, the symmetry factor −1/3!
must be multiplied by 3. The same counting applies to the
third diagram of Fig. 15. For the diagram in the center we
obtain (1/2!)2 × 22 which cancels against the other two

1 432 1 432 1 432

Fig. 15. Graphical representation of
the process describing the single inclu-
sive cross section
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×

∗

+ ×

∗

+ ×

∗

Fig. 16. An example of the interference among different processes that produce the cancellation. The line with the arrow in
the final state correspond to the emission of the jet

diagrams. In summary, the four gluon corrections to the
inclusive cross section Fig. 14 cancel.

Several remarks have to made about this result. First,
all arguments given above apply to the inclusive cross sec-
tion: in Fig. 16 we have illustrated, as an example, a few
final states which contribute. These final states alone will
not sum up to zero: the cancellations are valid only after
summation and integration over all final states partons
other than the parton singled out by the jet (marked by
an arrow). This means that, for individual events, these
AGK cancellations are not visible. It is only after the sum-
mation over many events that the cancellations work. A
necessary ingredient for this are the rescattering contribu-
tions (first and second term in Fig. 16): if they would be
left out, AGK would not work.

Second, the observed jet has introduced the hard scale
which is necessary for justifying the use of gluon ladders.
Such a hard scale is not present in the other ladders (e.g.
in the uncut ladder in the first diagram of Fig. 16, or in
the cut ladder in the last graph of Fig. 16): in the inclusive
cross section we sum over final states which might include
a large fraction of soft final states. So, strictly speaking,
we have demonstrated only the cancellations between hard
final states. This is certainly important for the modeling
of multiple parton interactions which lead to the produc-
tion of partons in the final states. However, it is impor-
tant to include also soft rescattering, i.e. the additional ex-
change of non-perturbative pomerons. This can be done by
combining the perturbative discussion of this subsection
with the non-perturbative one given in Sect. 3.1. There
we have noted that, when adding soft pomerons to a sin-
gle cut Regge pole, the sum over all cuts across the soft
pomerons cancels. If we simply substitute our hard cut
pomeron (containing the produced jet) for this single cut
Regge pole, we conclude that, in our pQCD inclusive cross
section, also all additional soft pomeron exchanges cancel.
This coincides with the well-known result in the collinear
factorization which follows from the QCD factorization
theorems [13].

A final comment applies to multiple exchanges between
the produced jet and one of the hadron projectiles. If one
of the two momentum fractions, say x1, becomes very
small, saturation effects are expected to become impor-
tant: first corrections of this type are shown in Fig. 13.

Obviously, they require higher order jet production ver-
tices which have not yet been calculated. These vertices
are somewhat analogous to the lowest order coupling of
two BFKL ladders to the photon, i.e. to the process: pho-
ton + BFKL → quark–antiquark. Namely, if we open, in
the first figure of Fig. 13, the cut pomeron below the jet
vertex, we can view this vertex as the square of the sub-
process: gluon + BFKL → jet. An important difference
between the two cases lies in the fact that the incoming
virtual photon is replaced by a colored gluon with trans-
verse momentum k2. In this context it is to be expected
that the reggeization of the gluon will be an issue: sim-
ilar to our remarks on D4 (second part of Sect. 2, (5)),
there will be pieces which belong to antisymmetric two-
gluon states and require a separate discussion. Another
question of particular interest is the applicability of the
dipole picture: in contrast to the color singlet photon, the
incoming gluon carries color and might lead to changes of
the impact factor.

We conclude this section with the generalization of
our discussion to an arbitrary number of reggeized glu-
ons: in the appendix we show that the cancellation works
for a general (even) number of additional reggeized gluons.
This leads to the remarkable conclusion that there are no
multi-pomeron corrections to the basic process illustrated
in Fig. 14: all soft or hard exchanges between the upper
and lower projectiles cancel. What remains are only the
multiple exchanges between the produced gluon and the
upper (or lower) proton.

4.2 Inclusive double jet production

We now discuss the inclusive production of two jets, the
Mueller–Navelet cross section. The leading contribution is
shown in Fig. 17a: when the rapidity interval between the
two observed jets is large the process is described by Regge
kinematics, and the large rapidity interval is due to the
BFKL Green function G2, which contains the exchanges of
gluons between the reggeized gluons (Fig. 17b); note that,
in our convention, G2 does not contain the propagators for
the external gluons.
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Φ2

G2

Φ2

=G2 + + +

a

y2, p2

y1, p1

Kreal

Kreal

b Fig. 17. a Leading term for the inclusive pro-
duction of two jets with a large rapidity interval
between them. b Definition of the two-to-two
reggeized gluons BFKL Green function

The formula for the cross section associated with
Fig. 17a is

x1x2d2σ

dx1dx2d2p1d2p2
(x1, x2, y,p1,p2)

=
1
4

∫
d2k

(2π)2
d2k′

(2π)2

× Φ2(x1;k,−k)
k2k2 Kreal(k,−k;k − p1,−k + p1)

× G2(y;k − p1,−k + p1;−k′ + p2,k′ − p2)
(k − p1)2(k − p1)2(k′ − p2)2(k′ − p2)2

(37)

× Kreal(k′,−k′;k′ − p2,−k′ + p2)
Φ2(x2;k′,−k′)

k′2k′2 .

Defining G̃2 as the usual Green function but with the prop-
agators for the gluons on the left side of the cut,

G̃2(y;k1,k2;k′
1,k

′
2) =

G2(y;k1,k2;k′
1,k

′
2)

k2
1k

′2
1

, (38)

and using (33), (37) can be rewritten as

x1x2d2σ

dx1dx2d2p1d2p2
(x1, x2, y,p1,p2)

=
1

4(2π)4
1

p2
1p

2
2

[
4αsNc

(2π)2

]2

(39)

×
∫

d2k
Φ2(x1;k,−k)

k2

∫
d2k′ Φ2(x2;k′,−k′)

k′2

× G̃2(y;k − p1,−k + p1;−k′ + p2,k′ − p2).

Note that in practice, because of the limited energy of
the hadron collider (e.g. the Tevatron), the kinematics
of Mueller–Navelet is chosen such that it maximizes the
rapidity gap between the two jets; this implies that the
momentum fractions x1 and x2 are not necessarily small,
i.e. the separations in rapidity between the jets and the
projectiles A and B are not particularly large. As a re-
sult, we have strong kt ordering between the jets and the
projectiles, and we are lead to the usual integrated gluon
densities (see (34)). The cross section (37) can be cast in
the form

x1x2d2σ

dx1dx2d2p1d2p2
(y, x1, x2,p1,p2)

= x1g(x1, M
2)

[
αsNc

p2
1

]
G̃2(y;−p1,p1;p2,−p2)

×
[
αsNc

p2
2

]
x2g(x2, M

2) (40)

which is the well-known Mueller–Navelet formula for di-
jet production in hadron–hadron scattering [10]. Also, the
incoming gluons with momenta k1 and k2 may be re-
placed by quark lines, and we have additional contribu-
tions from the quark densities. Throughout our discussion
of the AGK counting, however, we restrict ourselves to the
region of small x1 and x2.

The first correction to (40) comes from the exchange
of four reggeized gluons. Our discussion requires small x1
and x2, and the coupling of the four gluons proceeds via
the function N4. The situation is akin to that shown in
Fig. 15, but now there are two vertices for the jet emis-
sion on each side of the cut. Between the two vertices, the
four reggeized gluons interact exchanging gluons; this in-
teraction is symmetric under the exchange of two gluon
lines. We denote this interaction by the Green’s function
G4 (which technically is obtained from the corresponding
BKP kernel [14,15] describing the evolution of n interact-
ing reggeized gluon states in the t-channel). Following the
same line of counting as before, we will find that only a
particular subset of the terms gives a non-vanishing contri-
bution to the inclusive observable. We treat three different
cases, which are illustrated in Fig. 18 (where only the cen-
tral cut case is shown).
(a) Both production vertices are attached to the same
reggeized gluons on each side of the cut; in this case the
counting is exactly the same as in the previous section,
and the sum of the correction terms vanishes.
(b) Both vertices are attached to the same reggeized gluon
on one side of the cut, but to different reggeized gluons on
the other side. For example, suppose that the vertices are
connected to the same reggeized gluon on the right side
(the other case is identical). The first cut (between 1 and
2) does not contribute since there is only one reggeized
gluon on the left side. The combinatorial factor for the
central cut (between 2 and 3) is 2 (the reggeized gluon
whom to attach the right sides of the vertices in the right
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G4 = + + +

d

Fig. 18. We show the central cut as an example of
the classification of the different terms which a priori
should contribute to the cross section: a both vertices
attached to the same gluon on both side, b to the
same gluon on one side but to different gluons to the
other, and c to different gluons on both sides. In d
we show the definition of the four-to-four reggeized
gluons Green function

side of the cut can be chosen among two) times 2 (the left
side of the first vertex can be attached to one of the two
reggeized gluon on the left, but the other vertex can only
be attached to the one left); together with the symmetry
factor 1/4, the contribution of the diagram is 1. Finally,
the combinatorial factor of the third cut (between 3 and 4)
is 3×2 because one of the vertices can be attached to one
of the three reggeized gluons on the left but the other one
to one of the two not connected to the first one. Combin-
ing this with the symmetry factor −1/6, the contribution
of the diagram becomes −1, which cancels exactly the +1
of the central cut.
(c) The vertices are attached to different reggeized gluons
on both sides of the cut: only one diagram contributes,
and there are no cancellations.

What emerges from this analysis of the four gluon ex-
change is that those diagrams, in which there are reggeized
gluons without a production vertex, give a vanishing con-
tribution. This statement holds for an arbitrary number
of reggeized gluons and any number of jets; in particu-
lar, diagrams involving the exchange of more that four
reggeized gluons do not contribute to the double inclusive
jet production. A general proof is given in the appendix.

For the case of the Mueller–Navelet jets we are thus
left with only one type of corrections (Fig. 19): the jets are
emitted from different reggeized gluons on both sides of
the cut. We write the explicit formula for the correction
represented in Fig. 19 in the following form:

x1x2d2σ

dx1dx2d2p1d2p2
(y, x1, x2,p1,p2)

=
1
4

∫ [
4∏

i=1

d2ki

(2π)2
d2k′

i

(2π)2

]

× (2π)2δ(2)(Σiki)(2π)2δ(2)(Σik′
i)

× Φ4(x1;k1,k2,k3,k4)
k2

1k
2
2k

2
3k

2
4

Kreal(k1,k4;k1 − p1,k4 + p1)
(k1 − p1)2(k4 + p1)2

G4

Φ4

Φ4

Kreal

Kreal
p1

p2

Fig. 19. Non-vanishing correction to the two jets inclusive jet
production due to the exchange of four reggeized gluons

× G4

(
y;

k1 − p1,k2,k3,k4 + p1

k′
1,k

′
2 − p2,k′

3 + p2,k′
4

)
(41)

× Kreal(k′
2,k

′
3;k′

2 − p2,k′
3 + p2)

(k′
2 − p2)2(k′

3 + p2)2
Φ4(x2;k′

1,k
′
2,k

′
3,k

′
4)

k′2
1 k′2

2 k′2
3 k′2

4
.

Here we have used another notation for the coupling of the
reggeons to the proton, Φ4 rather than N4: in the limit of
small xi, Φ4 coincides with N4. In a more realistic situation
we might allow for strong ordering of transverse momenta
in those reggeized gluons which connect the jet vertex (cf.
our discussion after (39)). As a consequence, the pattern
of integrations in (41) is more involved than it was in (39).
In particular, the relation between the coupling Φ4 and the
vertex functions N4 requires a more detailed discussion.

We finally turn our attention to the Green function G4;
since only the central cut survives, there are only diagrams
corresponding to multiplicity k = 0, 2. The diffractive case
(i.e. the first diagram drawn in Fig. 18d) is known in the
literature as “hard color singlet” [16]: there is a rapidity
gap between the two observed jets. Performing the usual
counting it is trivially verified that the weight factors of
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ca b

Fig. 20. Some diagrams contributing to the three jet produc-
tion notwithstanding the AGK cancellations

the double multiplicity part of the cut Green function (k =
2) is twice the one of the diffractive part (k = 0) and, as
before, a switch of the pairing structure inside G4 does not
spoil this relation.

Specific models [17,18] require the discussion of
reggeon diagrams which are more complicated than those
discussed in this paper; in particular, this includes dia-
grams which change the number reggeized gluon in the
t-channel. For any t-channel state with a fixed number
of gluons, 2n, our discussion applies. However, when con-
sidering, for example, double inclusive jet cross sections
where between the two emissions the number of gluons
changes, one expects to see new contributions where one of
the produced jet originates from the gluon number chang-
ing vertex. As we have said above, the application of AGK
cutting rules to such vertices requires a separate discus-
sion.

4.3 Remarks on the relation
to phenomenological models

The topic of multiple interactions has been addressed for
many years (see, for example, [3] and references therein,
or [9]). Key elements are multi-parton distributions, which
are interpreted as probabilities of finding, inside the
hadron, a number np ≥ 1 of partons with longitudinal mo-
mentum fractions {xi}, i = 1, ..., np. In the framework of
kt factorization the partons also carry transverse momenta
{ki}. These partons then interact through hard subpro-
cesses and produce partonic final states. In the final step,
color strings between the produced partons and the rem-
nants of the hadrons describe the hadronization.

The AGK analysis of this paper has mostly been for-
mulated in terms of angular momenta, which are conju-
gate to energy variables. When translating our results, one
first has to emphasize that all the AGK analysis applies to
the limit of small momentum fractions xi. In particular,
in the coupling functions Nn the gluons have longitudinal
momentum fractions xi which are all small and defined
to be all of the same order. Hence, in our notation we
have not specified the dependence upon the xi but rather
used the conjugate variable of total angular momentum ω.

However, as we have discussed after (4) and illustrated by
our example of the eikonal model, it is possible to define
more general coupling functions N by introducing a de-
pendence upon angular momenta of subsystems of gluons,
e.g. ωij . This corresponds to momentum fractions which
are small but of different order of magnitude. But, as usual
in the small-x approximations, conservation of longitu-
dinal momenta is not observed, and therefore a detailed
assignment of longitudinal momenta is not easy. There-
fore, as far as the modeling of multiple interactions is con-
cerned, the AGK analysis presented in this paper should
mainly be viewed as providing constraints for the limit of
small-x values. For a hadron collider which operates at
energies as high as the LHC, these constraints should be
quite essential.

From the AGK analysis it becomes quite clear that
there exist contributions to the cross section which can-
not simply be interpreted as probability distributions. Ex-
amples have been illustrated in Fig. 16: whereas the third
contribution represents a square of production amplitudes,
and the couplings of the gluons to the upper (or lower) pro-
ton might be interpreted as a “probability of finding two
gluons inside a proton”, the first and the second contribu-
tions are interference terms. Another example of a proba-
bilistic contribution is shown in Fig. 19. The third diagram
in Fig. 20, on the other hand, illustrates an another inter-
ference term which survives after all AGK cancellations
have been worked out.

One is therefore lead to a more general concept of mul-
tiparton correlators. Even in the framework of collinear
factorization at the leading twist level, there is already
the well-known example of the generalized parton distri-
butions (see [19] for a review), which represent correla-
tions between two partons inside the proton. In this case
it is possible to obtain direct experimental information of
these correlations by exploiting, for example, the inter-
ference between the DVCS (virtual Compton scattering)
and the BH (Bethe–Heitler) process [20]. Beyond these
two-parton correlators very little has been worked out in
the literature.

5 Conclusions

In this paper we have discussed the origin and a few con-
sequences of the AGK cutting rules in pQCD where the
pomeron is described by the BFKL gluon ladders. We have
identified the basic ingredient for the validity of the AGK
cutting rules, the symmetry properties of couplings of n
reggeized gluons to the projectile; they are in agreement
with general properties of reggeon unitarity equations, and
they have explicitly been verified in pQCD in γ∗γ∗ (or
onium–onium scattering).

As to consequences of the AGK counting rules, we have
considered single and double inclusive jet production. In
both cases, multipomeron exchanges across the produced
jets cancel; this holds for both soft and hard pomerons. In
the two-jet inclusive case, there exists an extra contribu-
tion in which the jets are emitted from two different parton
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chains. As an example, we have analyzed how this contri-
bution looks like in the Mueller–Navelet jet final states;
this contribution turns out to be related also to the hard
color singlet exchange cross section.

At very small x values, QCD saturation effects are ex-
pected to become important. Our AGK analysis leads to
the conclusion that such non-linear corrections should be
modelled as multiple exchanges between the jet vertices
or between jet vertices and either of the projectiles, but
not between the two projectiles.

Several important questions have not been addressed
in this paper, and our analysis of AGK counting rules
in proton–proton scattering remains incomplete. First,
QCD allows for two-gluon states in the t-channel that are
antisymmetric under momentum and color exchange: in
pQCD, bootstrap equations have been shown to be valid,
as a result of which the such two-gluon states are iden-
tical to a single reggeized gluon. We conjecture that this
property holds also beyond pQCD: in this case, as far as
the reggeization of gluons is concerned, we do not need to
introduce new couplings to the hadron, and our discussion
can be reduced to the symmetric functions which ensure
the validity of the AGK counting rules. Nevertheless, the
existence of these reggeizing pieces require further studies:
the most prominent example is γ∗–proton scattering (i.e.
the deep inelastic structure function), where in leading
order the coupling of four reggeized gluons to the virtual
photon consist of reggeized pieces only. This process will
be studied in a forthcoming paper.

In this paper we also have not yet included the odd-
eron. Perturbative QCD contains an odderon state, built
from (at least) three interacting reggeized gluons. It re-
quires couplings to the proton which satisfy special sym-
metry properties. Since the intercept of the highest odd-
eron state known so far [21] lies at unity, at high energies
it will be less important; a complete analysis, however,
will have to include odderon exchange.

Another aspect which requires further studies is the
limitation due to finite energies. Strictly speaking, the
AGK analysis in terms of ladder diagrams requires infi-
nite energies: at any finite energy, the number of produced
gluons inside a cut ladder is limited, and, therefore, also
the number of different “cut ladders”, k, cannot be arbi-
trarily large. When modeling multiple parton interactions,
this may have consequences (e.g. incomplete cancellations)
which have to be worked out in detail.
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Appendix

In this appendix we present a few details of the general-
ization of our results to 2n gluons. We start with a bit

of notation. Let Ãn(s, t) denote the energy discontinuity
of the contribution of n-reggeized gluon exchange in the
elastic amplitude for the process AB → AB, F̃n(ω,q).
The energy discontinuity can be written as the sum over
products of production amplitudes T̃ j

AB→X(s, t) for the
process AB → X, where the index j stands for the num-
ber of exchanged reggeized gluons. Each such term is of
the form T̃ j

AB→X(s, t)(T̃ 2n−j
AB→X(s, t))∗, i.e. j gluons are ex-

changed inside the “left” amplitude, 2n− j in the “right”
complex conjugate amplitude, and the total number of ex-
changed gluons is 2n. In order to construct Ãn(s, t), we
have to sum over j = 1, ..., 2n − 1. Furthermore, we also
have to sum (denoted by

∑
B.S.) over all the possibilities

to form bound states of two reggeized gluons bound states
(pomerons) inside the amplitudes N2n:

Ãn(s, t)

def= 2i
∑
B.S.

2n−1∑
j=1

∫
dΩX T̃ j

AB→X(s, t1)
(
T̃ 2n−j

AB→X(s, t2)
)∗

= 2i
∑
B.S.

2n−1∑
j=1

∫
dΩ2n s1+β̃N2nN2n (A.1)

× iξG(k1)...iξG(kj)
j!

[iξG(kj+1)...iξG(k2n)]∗

(2n − j)!
.

Here we have made used of the fact that N2n does not
depend on the position of the cut. The tilde symbol indi-
cates that we are working in pQCD. Since the signature
factor ξG(k) = −2/πk2 is real (cf. the discussion after
(13)), (A.1) can be cast into the form

Ãn(s, t) = 2nπi
∑
B.S.

2n−1∑
j=1

Sn
j

∫
dΩ2n s1+β̃n N2n N2n γ̃{kl},

(A.2)
where we have used (16), and we have introduced the sym-
metry factor

Sn
j =

(−1)n−j

j!(2n − j)!
. (A.3)

Inclusive case

We begin with the fully inclusive case of Sect. 3. Starting
from (A.1) we want to find a decomposition in terms of
cut pomerons. For each position of the cut (denoted by
j) we first classify all the different possibilities of form-
ing 2-gluon bound states out of the 2n reggeized gluons;
at the same time we have to keep track of how many of
these bound states are cut by the energy-cutting line. Let
k denote the number of such cut bound states: then k also
labels the multiplicity of s-channel gluons intersected by
the cutting lines. We then must count how many different
configurations (i1j1)...(injn) contribute to a term belong-
ing to the multiplicity k.

Denoting by Cn the number of different pairings
among 2n reggeized gluons, it is clear that Cn = (2n−1)!!:
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starting with the first reggeized gluon to the left of the cut-
ting line, its partner can be chosen among 2n− 1 other t-
channel gluons; the partner of the next unpaired reggeized
gluon can be chosen among 2n − 3 other gluons, and so
forth until all the reggeized gluons have been put into
pairs. Next we will decompose Cn into contributions with
fixed multiplicity k:

Cn =
∑

k

Cn
jk, (A.4)

where Cn
jk is the number of configurations that contain

exactly k cut pairs. The subscript j indicates that this
number will depend upon the position of the cutting line.
It is clear that Cn

jk is 0 unless k and j are both even or
both odd, i.e. Cn

jk ∝ 1/2(1+(−1)j+k). Also, we need k ≤ j

and k ≤ 2n− j, i.e. the range of k values in (A.4) depends
upon j. If j and k satisfy these conditions we can chose
k reggeized gluons in each side of the cut in

(
j
k

)(2n−j
k

)
different ways and couple each reggeized gluon in the left
side with a reggeized gluon in the right side (this can be
done in k! ways). We are left with j − k reggeized gluons
on the left side and 2n − j − k on the right side, which
must be coupled in pairs without crossing the cut; there
are (j−k−1)!!(2n−j−k−1)!! ways to do that. Eventually
the expression obtained is

Cn
jk =

1 + (−1)j+k

2
j!(2n − j)!

k!(j − k)!!(2n − j − k)!!
, (A.5)

and it is easy to verify that (A.5) satisfies (A.4).
With this expression for Cn

jk we can rewrite (A.1) as
a sum over the multiplicity index k of fixed-multiplicity
contributions Ãn

k (s, t):

Ãn(s, t) =
n∑

k=0

Ãn
k (s, t), (A.6)

where

Ãn
k (s, t) = 2nπi

2n−k∑
j=k

Sn
j Cn

jk

∫
dΩ2n s1+β̃ N2n N2n γ̃{kl}.

(A.7)
The reader should note that the integral in (A.7) does not
depend upon j or k; therefore there is just a combinatorial
factor in front of the integral. Performing the sum in (A.7)
we arrive at

2n−k∑
j=k

Sn
j Cn

jk =
(−1)n

2 k!

2n−k∑
j=k

(−1)j + (−1)k

(j − k)!!(2n − j − k)!!

=

{
(−1)n

n! (1 − 21−n) if k = 0,
(−1)n−k

k!(n−k)! if k > 0.
(A.8)

With the definition (15), we have shown that (A.7) can be
written as in (14).

Switches of pairings

Now we want to show that a switch from a configura-
tion (i1j1)...(injn) to (i′1j

′
1)...(i

′
nj′

n) preserves the relative
weight between different multiplicities k. The situation is
the following: at some point in rapidity we have the config-
uration (i1j1) . . . (injn) with multiplicity k, and the weight
factor of this multiplicity k is the usual F̃n

k given in (15);
moving now to a neighboring rapidity interval we switch
to a different configuration (i′1j

′
1) . . . (i′nj′

n), and we want
to compute the weight of the term with k′ cut rungs. Con-
tributions to this k′ can come from different k terms before
the switch; we therefore must sum over k the F̃n

k multi-
plied by the number of ways of obtaining a configuration
with k′ cut rungs (normalized by the total number).

Put in other words, we must build an (n+1)× (n+1)
matrix, where the initial multiplicity k labels the columns,
and the final multiplicity k′ labels the rows; the elements
Mn

k′k of this matrix are defined to be the fraction of con-
figurations which, after the switch, lead to k′ cut rungs.
We then want to show that the vector F̃n

k is an eigen-
vector of this matrix Mn

k′k. Using a vector notation and
dropping the index n we want to show that

F ∝ MF . (A.9)

But F is an eigenvector of M if and only if it is an eigen-
vector of M + c� where c is an arbitrary constant. Note
that, by definition, M is computed by considering only
transitions between different pairwise configurations, and
a transition to the same configuration, in our matrix no-
tation, is proportional to the identity (the nature of the
cut does not change). The proportionality constant is just
1/Cn, where Cn is the total number of configurations de-
fined before. We normalize the matrix M by dividing by
Cn − 1 instead of Cn, because we are considering only
transitions to different configurations; of course, this nor-
malization does not affect the form of the eigenvectors
(it changes only the eigenvalues). So we can change its
normalization multiplying by (Cn − 1)/Cn. Eventually,
proving (A.9) is equivalent to proving

F ∝ MF , (A.10)

where we have introduced the new matrix M defined by

M =
(Cn − 1)M + �

Cn
. (A.11)

This new matrix M now contains all possible switches to
a new configuration, not only to the different ones.

Instead of computing explicitly the coefficients of M, it
is easier to compute directly the RHS of (A.10), i.e. write
the sum over the various contributions due to different
positions of the cut before the switch. For fixed j and k it is
trivial to obtain the fraction of configurations with k′ cut
rungs: it is Cn

jk′/Cn (note that this is true only because we
are no longer restricting ourselves to the new configuration
being different from the previous one). Therefore, using

F̃n
k = 2n−1n!

2n−k∑
j=k

Sn
j Cn

jk, (A.12)
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the RHS of (A.10) can be written as

n∑
k=0

2n−1n!
2n−k∑
j=k

Cn
jk′

Cn
Sn

j Cn
jk. (A.13)

After using (A.4), this gives exactly F̃n
k′ , i.e. the F̃n

k form
an eigenvector.

1-Jet inclusive

In this subsection we generalize the cancellation of dia-
grams with n > 2 gluon lines in the single inclusive cross
section. The discontinuity of the amplitude for single jet
production is given by

Ãn
1−jet(s, t) (A.14)

= 2i
∑
B.S.

2n−1∑
j=1

j(2n − j)Sn
j

∫
dΩ2n s1+β̃ N2n N2n γ̃{kl},

where the factor j(2n − j) counts the number of ways in
which the jet can be connected to the reggeized gluons on
the LHS and RHS of the cutting line. Since now we are
not interested in counting the number of cut pomerons,
the sum over different bound state configuration gives just
a global factor Cn. Performing the summation over the
position of the cut j we get

2n−1∑
j=1

j(2n − j)Sn
j = (−1)n

2n−1∑
1

(−1)j

(j − 1)!(2n − j − 1)!

= (−1)n−1
2n−2∑

0

(−1)j

j!(2n − j − 2)!

=

{
1 if n = 1,

0 if n > 1,
(A.15)

and we have the result

Ãn
1−jet(s, t) = 0 if n > 1. (A.16)

2-Jet inclusive

The situation is similar to the previous one: the combina-
toric factor j(2n− j) is replaced by j2(2n− j)2. The sepa-
ration in the three cases analyzed in Sect. 4.2 can formally
be obtained by writing one of the factors j as (j − 1) + 1
and one of the factors 2n− j as (2n− j − 1) + 1; the com-
binatorial factor j2(2n− j)2 is therefore written as a sum
of four terms:

j2(2n − j)2 = j(j − 1)(2n − j)(2n − j − 1)
+ j(2n − j)(2n − j − 1) + j(j − 1)(2n − j)
+ j(2n − j) . (A.17)

Let us also classify these terms counting the numbers
(nl, nr) of reggeized gluons on the (left, right) side of the

cut which emit at least one gluon (from the jet vertex). If
n = 1 clearly only the last term in (A.17) is present (since
j = 1) and this correspond to the case (nl, nr) = (1, 1).
For n ≥ 2 all the terms are not trivial:
(1) j(j−1)(2n−j)(2n−j−1), corresponding to the jets be-
ing connected to different reggeized gluons on both sides,
(nl, nr) = (2, 2);
(2) j(2n − j)(2n − j − 1), corresponding to the jets be-
ing connected to different reggeized gluons on the right
hand side but to the same gluon on the left hand side,
(nl, nr) = (1, 2);
(3) j(j − 1)(2n − j), corresponding to the jets being con-
nected to different reggeized gluons on the left hand side
but to the same gluon on the right hand side, (nl, nr) =
(2, 1);
(4) j(2n−j), corresponding to the jets being connected to
the same reggeized gluons on both sides, (nl, nr) = (1, 1).

It is easy to verify that after multiplication with the
usual symmetry factor and summation over j, the last
three terms vanish independently and the first one van-
ishes unless n = 2, so that the only surviving contributions
appear when n = (nl + nr)/2.

m-Jet inclusive

We are now ready to generalize this result to the emis-
sion of m jets. The contribution of the 2n-reggeized gluon
diagram is

Ãn
m−jet(s, t) (A.18)

= 2i
∑
B.S.

2n−1∑
j=1

Sn
j jm(2n − j)m

∫
dΩ2n s1+β̃ N2n N2nγ̃{kl}.

With the manipulations described in the previous subsec-
tion, we can reduce this expression to a sum of terms,
each of which corresponds to a diagram in which a certain
number nr of reggeized gluons on the right side of the cut
emit at least one gluon, and nl reggeized gluons on the
left hand side emit one or more gluons. Each term is of
the form

(−1)n
2n−nr∑
j=nl

(−1)j

j!(2n − j)!
j(j − 1) . . . (j − nl + 1)

×(2n − j)(2n − j − 1) . . . (2n − j − nr + 1)

= (−1)n
2n−nr∑

nl

(−1)j

(j − nl)!(2n − j − nr)!

= (−1)n
2n−nr−nl∑

0

(−1)j+nl

j!(2n − j − nr − nl)!
(A.19)

=
(−1)nl+nr

(2n − nl − nr)!

2n−nr−nl∑
0

(
2n − nl − nr

j

)
(−1)j

=

{
(−1)

nl−nr
2 if n = nl+nr

2 ,

0 if n > nl+nr
2 .
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Since nl,r ≤ m, the inequality (nl + nr)/2 ≤ m holds, and
all diagrams with n > m vanish. Among the others, the
non-vanishing ones are those which satisfy the condition
n = (nl + nr)/2. Briefly the condition is

2n = nl + nr , m > n, (A.20)

and it fixes also the position of the cut to j = nl.
The vanishing of (A.18) for n > m can also be seen in

another way:

2n−1∑
j=1

Sn
j jm(2n − j)m

=
2n−1∑

1

(−1)n−j

j!(2n − j)!
jm(2n − j)m

=
1

(2n)!

2n∑
0

(
2n

j

)
(−1)n−jjm(2n − j)m

=
(−1)n

(2n)!
∂2m

∂αm∂βm
e2nβ

2n∑
0

(
2n

j

)
(−1)2n−je(α−β)j

︸ ︷︷ ︸
=(eα−β−1)2n

∣∣∣∣
α,β=0

=
(−1)n

(2n)!
∂2m

∂αm∂βm
(eα − eβ)2n

∣∣∣∣
α,β=0

(A.21)

=
(−1)n

(2n)!

(
x

∂

∂x

)m (
y

∂

∂y

)m

(x − y)2n

∣∣∣∣
x,y=1

.

The operator (x∂x)m can be written as(
x

∂

∂x

)m

=
m∑

k=1

am
k xk ∂k

∂xk
, (A.22)

where the coefficients am
k are positive integer numbers

whose explicit expression is not needed. Using (A.22) in
(A.21) we obtain

(−1)n

(2n)!

m∑
k,k′=1

am
k am

k′xkyk′ ∂k

∂xk

∂k′

∂yk′ (x − y)2n

∣∣∣∣∣∣
x,y=1

= (−1)n
m∑

k,k′=1

δk+k′,2nam
k am

k′(−1)k′
, (A.23)

which vanishes if n > m.
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